Page 175 - PENSAR UN PACIFICO LATINOAMERICANO: RETOS POLITICOS, ETICOS Y MEDIOAMBIENTALES
P. 175
Lovholt, F., Fraser, S., Salgado-Galvez, M., Lorito, S., Selva, J.,
Romano, F., Baptista, M. A. (2018). Global Trends in
Advancing Tsunami Science for Improved Hazard and Risk
Understanding. In GAR (pp. 1-50).
Ma, J., Hickey, M., & Komjathy, A. (2015). Ionospheric Electron
Density Perturbations Driven by Seismic Tsunami-Excited
Gravity Waves: Effect of Dynamo Electric Field. Journal of
Marine Science and Engineering, 3(4), 1194–1226.
https://doi.org/10.3390/jmse3041194
Macabuag, J. (2017). Tsunami Damage Prediction for Buildings :
Development of Methods for Empirical and Analytical Fragility
Function Derivation. University College London.
Maeda, T., Obara, K., Shinohara, M., Kanazawa, T., & Uehira, K.
(2015). Successive estimation of a tsunami wavefield without
earthquake source data: A data assimilation approach
toward real-time tsunami forecasting. Geophysical Research
Letters, 42(19), 7923-7932.
https://doi.org/10.1002/2015GL065588
Mokhtari, M. (2016). Introductory Chapter: A General Overview
of Tsunami and Effectiveness of Early Warning System. In
Tsunami (pp. 3-10). InTech. https://doi.org/10.5772/65081
National Geophysical Data Center / World Data Service
(NGDC/WDS): Global Historical Tsunami Database.
National Geophysical Data Center, NOAA. (n.d.).
https://doi.org/10.7289/V5PN93H7
Nimbargi, S. R., Hadawale, S., & Ghodke, G. (2018). Tsunami alert
& detection system using IoT: A survey. 2017 International
Conference on Big Data, IoT and Data Science, BID 2017, 2018-
Janua, 182-184. https://doi.org/10.1109/BID.2017.8336595
Okal, E. A. (2015). The quest for wisdom : lessons, (December
2004), 2004-2014.
175